AI资讯新闻榜单内容搜索-Test Time

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Test Time
告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。

来自主题: AI技术研报
6889 点击    2025-09-03 12:03
Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

大语言模型(LLM)在标准编程基准测试(如 HumanEval,Livecodebench)上已经接近 “毕业”,但这是否意味着它们已经掌握了人类顶尖水平的复杂推理和编程能力?

来自主题: AI技术研报
6170 点击    2025-07-07 10:39
Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。

来自主题: AI技术研报
6523 点击    2025-07-04 09:44
扩展强化学习:环境、奖励黑客、智能体、数据扩展

扩展强化学习:环境、奖励黑客、智能体、数据扩展

扩展强化学习:环境、奖励黑客、智能体、数据扩展

Test time scaling范式蓬勃发展。推理模型持续快速改进,变得更为高效且价格更为亲民。在评估现实世界软件工程任务(如 SWE-Bench)时,模型以更低的成本取得了更高的分数。以下是显示模型变得更便宜且更优秀的图表。

来自主题: AI技术研报
5634 点击    2025-06-09 10:25